Exercise
Jan 18'24
Answer
Answer: C
[[math]]
\begin{aligned}
{ }_{2 \mid 2} A_{65}= & \underbrace{v^{3}}_{\text {payment year } 3} \underbrace{p_{[65]}}_{\text {Lives } 2 \text { years }} \times \underbrace{q_{[65]+2}}_{\text {Die year } 3} \\
& +\underbrace{v^{4}}_{\text {payment year } 4} \underbrace{3 p_{[65]}}_{\text {Lives 3 years }} \times \underbrace{q_{65+3}}_{\text {Die year 4 }} \\
= & \left(\frac{1}{1.04}\right)^{3}(0.92)(0.9)(0.12) \\
& +\left(\frac{1}{1.04}\right)^{4}(0.92)(0.9)(0.88)(0.14) \\
= & 0.088+0.087=0.176
\end{aligned}
[[/math]]
The actuarial present value of this insurance is therefore [math]2000 \times 0.176=352[/math].