Exercise
ABy Admin
May 03'23
Answer
Solution: D
If a month with one or more accidents is regarded as success and [math]k[/math] = the number of failures before the fourth success, then [math]k[/math] follows a negative binomial distribution and the requested probability is
[[math]]
\begin{align*}
\operatorname{P}[ k ≥ 4] = 1 − \operatorname{P}[ k ≤ 3] &= 1 - \sum_{k=0}^3 \binom{3+k}{k} (\frac{3}{5})^4(\frac{2}{5})^k \\
&= 1-(\frac{3}{5})^4\left[ \binom{3}{0}(\frac{2}{5})^0 + \binom{4}{1}\left( \frac{2}{5}\right)^1 + \binom{5}{2} \left( \frac{2}{5}\right)^2 + \binom{6}{3} \left ( \frac{2}{5}\right)^3 \right ] \\
&= 1-\left( \frac{3}{5} \right )^4 \left[ 1 + \frac{8}{5} + \frac{8}{5} + \frac{32}{25} \right ] \\
&= 0.2898.
\end{align*}
[[/math]]
Alternatively, the solution is
[[math]]
\left ( \frac{2}{5} \right )^4 + \binom{4}{1}\left ( \frac{2}{5} \right )^4 \frac{3}{5} + \binom{5}{2} \left ( \frac{2}{5} \right )^4 \left ( \frac{3}{5} \right )^2 + \binom{6}{3} \left ( \frac{2}{5} \right )^4\left ( \frac{3}{5} \right )^3 = 0.2898
[[/math]]
which can be derived directly or by regarding the problem as a negative binomial distribution with
- success taken as a month with no accidents
- [math]k[/math] = the number of failures before the fourth success, and
- calculating [math]\operatorname{P}[ k ≤ 3][/math]