Exercise
May 07'23
Answer
Solution: C
Suppose there are N red sectors. Let w be the probability of a player winning the game. Then, w = the probability of a player missing all the red sectors and
[[math]]
w = 1 - \left [ \frac{9}{20} + \left (\frac{9}{20} \right)^2 + \ldots + \left( \frac{9}{29}\right)^N\right ] \frac{1-\left( \frac{9}{20}\right)^N}{1-\frac{9}{20}} = \frac{2}{11} + \frac{9}{11} \left ( \frac{9}{20}\right)^N
[[/math]]
Using the geometric series formula,
[[math]]
w = 1 - \frac{\frac{9}{20} - \left( \frac{9}{20}\right)^{N+1}}{1- \frac{9}{20}} = 1- \frac{9}{20} \frac{1- \left( \frac{9}{20} \right)^{N}}{1- \frac{9}{20}} = \frac{2}{11} + \frac{9}{11} \left ( \frac{9}{20}\right)^{N}
[[/math]]
Thus we need
[[math]]
\begin{align*}
0.2 \gt w = \frac{2}{11} + \frac{9}{11} \left ( \frac{9}{20}\right)^N \\
2.2 \gt 2 + 9 \left ( \frac{9}{20} \right ) ^N \\
0.2 \gt 9 \left ( \frac{9}{20} \right )^N \\
\frac{2}{90} \gt \left (\frac{9}{20} \right)^N \\
\left ( \frac{20}{9}\right)^N \gt 45 \\
N \gt \frac{\ln(45)}{\ln(20/9)} \approx 4.767
\end{align*}
[[/math]]
Thus [math]N[/math] must be the first integer greater than 4.767, or 5.