[math]\mathrm{X}[/math] and [math]\mathrm{Y}[/math] are both age [math]61 . \mathrm{X}[/math] has just purchased a whole life insurance policy. [math]\mathrm{Y}[/math] purchased a whole life insurance policy one year ago.
Both [math]\mathrm{X}[/math] and [math]\mathrm{Y}[/math] are subject to the following 3-year select and ultimate table:
[math]x[/math] |
[math]\ell_{[x]}[/math] |
[math]\ell_{[x]+1}[/math] |
[math]\ell_{[x]+2}[/math] |
[math]\ell_{x+3}[/math] |
[math]x+3[/math]
|
60 |
10,000 |
9,600 |
8,640 |
7,771 |
63
|
61 |
8,654 |
8,135 |
6,996 |
5,737 |
64
|
62 |
7,119 |
6,549 |
5,501 |
4,016 |
65
|
63 |
5,760 |
4,954 |
3,765 |
2,410 |
66
|
The force of mortality is constant over each year of age.
Calculate the difference in the probability of survival to age 64.5 between [math]\mathrm{X}[/math] and [math]\mathrm{Y}[/math].
- 0.035
- 0.045
- 0.055
- 0.065
- 0.075
Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.