Exercise
Jan 18'24
Answer
Answer: A
The present value random variable [math]\mathrm{PV}=1,000,000 e^{-0.05 T}, 2 \leq T \leq 10[/math] is a decreasing function of [math]T[/math] so that its [math]90^{\text {th }}[/math] percentile is
[[math]]
\begin{aligned}
& 1,000,000 e^{-0.05 p} \text { where } p \text { is the solution to } \int_{2}^{p} 0.4 t^{-2} d t=0.10 . \\
& \int_{2}^{p} 0.4 t^{-2} d t=-\left.0.4\left(\frac{t^{-1}}{-1}\right)\right|_{2} ^{p}=0.4\left(\frac{1}{2}-\frac{1}{p}\right)=0.10 \\
& p=4 \\
& 1,000,000 e^{-0.05 \times 4}=81,873.08
\end{aligned}
[[/math]]