Exercise
ABy Admin
Jan 19'24
Answer
Answer: C
Let [math]\pi[/math] be the annual premium, so that [math]\pi \ddot{a}_{50}=A_{50}+0.01 \ddot{a}_{50}+0.19[/math]
[math]\Rightarrow \pi=\frac{A_{50}+0.19}{\ddot{a}_{50}}+0.01=\frac{0.18931+0.19}{17.0245}+0.01=0.03228[/math]
Loss at issue: [math]L_{0}=v^{k+1}-(\pi-0.01) \ddot{a}_{\overline{k+1}}\left(1-v^{k+1}\right) / d+0.19[/math]
[[math]]
\begin{aligned}
\Rightarrow \operatorname{Var}\left[L_{0}\right] & =\left(1+\frac{(\pi-0.01)}{d}\right)^{2}\left({ }^{2} A_{50}-A_{50}^{2}\right) \\
& =(2.15467)\left(0.05108-0.18931^{2}\right) \\
& =(2.15467)(0.015242) \\
& =0.033
\end{aligned}
[[/math]]