Exercise
ABy Admin
May 14'23
Answer
Key: E
In each round,
N = result of first roll, to see how many dice you will roll
X = result of for one of the N dice you roll
S = sum of X for the N dice
[[math]]
\operatorname{E}( X ) = \operatorname{E}( N ) = 3.5
[[/math]]
[[math]]
\operatorname{E}( X ) = \operatorname{E}( N ) = 2.9167
[[/math]]
[[math]]
\operatorname{E}( S ) = \operatorname{E}( N ) \operatorname{E}( X ) = 12.25
[[/math]]
[[math]]
\operatorname{E}( S ) = \operatorname{E}( N )\operatorname{E}( X ) + \operatorname{E}( N ) \operatorname{E}( X )^2 = 3.5(2.9167) + 2.9167(3.5) 2 = 45.938
[[/math]]
Let [math]S_{1000}[/math] the sum of the winnings after 1000 rounds
[[math]]
\operatorname{E}(S_{1000}) = 1000(12.25) - 12,250
[[/math]]
[[math]]
SD(S_{1000}) = \sqrt{1000(45.938)} = 214.33
[[/math]]
After 1000 rounds, you have your initial 15,000, less payments of 12,500, plus winnings for a total of 2,500 + [math]S_{1000}[/math]. Since actual possible outcomes are discrete, the solution tests for continuous outcomes greater than 15000-0.5. In this problem, that continuity correction has negligible impact.
[[math]]
\begin{aligned}
\operatorname{Pr}(2,500 + S_{1000} \gt 14,999.5 ) &= \operatorname{Pr}(S_{1000} \gt 12,499.5 ) \\ &\approx \operatorname{Pr}( Z \gt \frac{12, 499.5 − 12, 250}{214.33} = 1.17)\\ &= 0.12
\end{aligned}
[[/math]]