BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Choose independently two numbers [math]B[/math] and [math]C[/math] at random from the interval [math][0,1][/math] with uniform density. Note that the point [math](B,C)[/math] is then chosen at random in the unit square. Find the probability that
- [math]B + C \lt 1/2[/math].
- [math]BC \lt 1/2[/math].
- [math]|B - C| \lt 1/2[/math].
- [math]\max\{B,C\} \lt 1/2[/math].
- [math]\min\{B,C\} \lt 1/2[/math].
- [math]B \lt 1/2[/math] and [math]1 - C \lt 1/2[/math].
- conditions (c) and (f) both hold.
- [math]B^2 + C^2 \leq 1/2[/math].
- [math](B - 1/2)^2 + (C - 1/2)^2 \lt 1/4[/math].