BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
For each of the following limits, find a function [math]f(x)[/math] such that the limit is equal to [math]\int_0^1 f(x) \; dx[/math]. Evaluate the limit.
- [math]\lim_{n\goesto\infty} \frac{1+2^2+3^2+\cdots+n^2}{n^3}[/math].
- [math]\lim_{n\goesto\infty} \frac{(1+n^2)+(2^2+n^2)+(3^2+n^2)+\cdots+(n^2+n^2)} {n^3}[/math].
- [math]\lim_{n\goesto\infty} \frac{\sqrt{1+n}+\sqrt{2+n}+\sqrt{3+n}+\cdots+\sqrt{n+n}} {n^{\frac32}}[/math].
- [math]\lim_{n\goesto\infty} \frac1{\sqrt n} \left(\frac1{\sqrt{1+n}}+\frac1{\sqrt{2+n}}+ \frac1{\sqrt{3+n}}+\cdots+\frac1{\sqrt{n+n}} \right)[/math].