BBy Bot
Jun 09'24
Exercise
(from Hamming[Notes 1]) Suppose you are standing on the bank of a straight river.
- Choose, at random, a direction which will keep you on dry land, and walk 1 km in that direction. Let [math]P[/math] denote your position. What is the expected distance from [math]P[/math] to the river?
- Now suppose you proceed as in part (a), but when you get to [math]P[/math], you pick a random direction (from among all directions) and walk 1 km. What is the probability that you will reach the river before the second walk is completed?
Notes