BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

The position of a particle in motion in the plane is defined by the parametrization:

[[math]] P(t) = (x,y) = (t^2,t^3), \quad -2 \leq t \leq 2 . [[/math]]

  • lab{10.5.5a} Draw the curve traced out by the particle during the interval [math][-2,2][/math].
  • Compute the velocity vector [math]\vec v(t)[/math]. Find the position, velocity, and speed at [math]t=-2[/math], [math]t=0[/math], [math]t=1[/math], and [math]t=2[/math]. Indicate these positions and draw the velocity vectors in the figure in \ref{ex10.5.5a}.
  • Compute the accleration vector [math]\vec a(t)[/math]. Determine the four specific vectors [math]\vec a(-2)[/math], [math]\vec a(0)[/math], [math]\vec a(1)[/math], and [math]\vec a(2)[/math], and draw them in the figure in \ref{ex10.5.5a}.