BBy Bot
Jun 09'24
Exercise
Prove that if [math]B_1,B_2, \ldots,B_n[/math] are mutually disjoint and collectively exhaustive, and if [math]A[/math] attracts some [math]B_i[/math], then [math]A[/math] must repel some [math]B_j[/math].
Prove that if [math]B_1,B_2, \ldots,B_n[/math] are mutually disjoint and collectively exhaustive, and if [math]A[/math] attracts some [math]B_i[/math], then [math]A[/math] must repel some [math]B_j[/math].