BBy Bot
Nov 03'24

Exercise

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

Prove that

  • [math]\ln 2 = \lim_{n\goesto\infty} \left( \frac1{n+1}+\frac1{n+2}+\cdots+\frac1{n+n} \right)[/math].
  • [math]\pi = \lim_{n\goesto\infty} \frac4{n^2} \left(\sqrt{n^2-1}+\sqrt{n^2-2}+\cdots+\sqrt{n^2-n^2} \right)[/math].
  • [math]\int_1^3(x^2+1)\;dx= \lim_{n\goesto\infty} \frac4{n^3} \sum_{i=1}^n(n^2+2in+2i^2)[/math].
  • [math]\frac{\pi}6 = \lim_{n\goesto\infty} \left(\frac{1}{\sqrt{4n^2-1}}+\frac{1}{\sqrt{4n^2-2^2}}+ \cdots+\frac{1}{\sqrt{4n^2-n^2}}\right)[/math].