BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
Prove that
- [math]\ln 2 = \lim_{n\goesto\infty} \left( \frac1{n+1}+\frac1{n+2}+\cdots+\frac1{n+n} \right)[/math].
- [math]\pi = \lim_{n\goesto\infty} \frac4{n^2} \left(\sqrt{n^2-1}+\sqrt{n^2-2}+\cdots+\sqrt{n^2-n^2} \right)[/math].
- [math]\int_1^3(x^2+1)\;dx= \lim_{n\goesto\infty} \frac4{n^3} \sum_{i=1}^n(n^2+2in+2i^2)[/math].
- [math]\frac{\pi}6 = \lim_{n\goesto\infty} \left(\frac{1}{\sqrt{4n^2-1}}+\frac{1}{\sqrt{4n^2-2^2}}+ \cdots+\frac{1}{\sqrt{4n^2-n^2}}\right)[/math].