BBy Bot
Nov 03'24
Exercise
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
(For those who have access to a high-speed digital computer and know how to use it.) Compute the Trapezoid approximation [math]T_n[/math] to each of the following integrals.
- [math]\int_0^1 \frac1{1+x^3} dx[/math], for [math]n=10[/math], [math]100[/math], and [math]1000[/math].
- [math]\int_0^1 \frac1{1+x^2} dx[/math], for successive values of [math]n = 10,100,1000,\ldots[/math], until the error is less that [math]10^{-6}[/math].
- [math]\int_0^1 \sqrt{1+x^3} \; dx[/math], for [math]n = 5[/math], [math]50[/math], and [math]500[/math].
- [math]\int_0^{\pi} \frac{\sin x}x dx[/math], for [math]n = 2[/math], [math]4[/math], [math]8[/math], [math]16[/math], and [math]100[/math].
- [math]\int_0^1 e^{-x^2}dx[/math], for [math]n=10[/math], [math]100[/math], and [math]1000[/math].