For a special whole life insurance policy issued on (40), you are given:
(i) Death benefits are payable at the end of the year of death
(ii) The amount of benefit is 2 if death occurs within the first 20 years and is 1 thereafter
(iii) [math]Z[/math] is the present value random variable for the payments under this insurance (iv) [math]\quad i=0.03[/math]
(v)
[math]x[/math] | [math]A_{x}[/math] | [math]{ }_{20} E_{x}[/math] |
---|---|---|
40 | 0.36987 | 0.51276 |
60 | 0.62567 | 0.17878 |
(vi) [math]\quad E\left[Z^{2}\right]=0.24954[/math]
Calculate the standard deviation of [math]Z[/math].
- 0.27
- 0.32
- 0.37
- 0.42
- 0.47
For a special 2-year term insurance policy on [math](x)[/math], you are given:
(i) Death benefits are payable at the end of the half-year of death
(ii) The amount of the death benefit is 300,000 for the first half-year and increases by 30,000 per half-year thereafter
(iii) [math]\quad q_{x}=0.16[/math] and [math]q_{x+1}=0.23[/math]
(iv) [math]\quad i^{(2)}=0.18[/math]
(v) Deaths are assumed to follow a constant force of mortality between integral ages
(vi) [math]Z[/math] is the present value random variable for this insurance
Calculate [math]\operatorname{Pr}(Z\gt277,000)[/math].
- 0.08
- 0.11
- 0.14
- 0.18
- 0.21
For a special increasing whole life insurance on (40), payable at the moment of death, you are given:
(i) The death benefit at time [math]t[/math] is [math]b_{t}=1+0.2 t, \quad t \geq 0[/math]
(ii) The interest discount factor at time [math]t[/math] is [math]v(t)=(1+0.2 t)^{-2}, \quad t \geq 0[/math]
(iii) [math]\quad{ }_{t} p_{40} \mu_{40+t}= \begin{cases}0.025, & 0 \leq t\lt40 \\ 0, & \text { otherwise }\end{cases}[/math]
(iv) [math]Z[/math] is the present value random variable for this insurance
Calculate [math]\operatorname{Var}(Z)[/math].
- 0.036
- 0.038
- 0.040
- 0.042
- 0.044
For a 30 -year term life insurance of 100,000 on (45), you are given:
(i) The death benefit is payable at the moment of death
(ii) Mortality follows the Standard Ultimate Life Table
(iii) [math]\delta=0.05[/math]
(iv) Deaths are uniformly distributed over each year of age
Calculate the [math]95^{\text {th }}[/math] percentile of the present value of benefits random variable for this insurance.
- 30,200
- 31,200
- 35,200
- 36,200
- 37,200
For a 3-year term insurance of 1000 on (70), you are given:
(i) [math]\quad q_{70+k}^{\text {SULT }}[/math] is the mortality rate from the Standard Ultimate Life Table, for [math]k=0,1,2[/math]
(ii) [math]\quad q_{70+k}[/math] is the mortality rate used to price this insurance, for [math]k=0,1,2[/math]
(iii) [math]\quad q_{70+k}=(0.95)^{k} q_{70+k}^{S U L T}[/math], for [math]k=0,1,2[/math]
(iv) [math]i=0.05[/math]
Calculate the single net premium.
- 29.05
- 29.85
- 30.65
- 31.45
- 32.25
For a 25 -year pure endowment of 1 on [math](x)[/math], you are given:
(i) [math]\quad Z[/math] is the present value random variable at issue of the benefit payment
(ii) [math]\operatorname{Var}(Z)=0.10 E[Z][/math]
(iii) [math]{ }_{25} p_{x}=0.57[/math]
Calculate the annual effective interest rate.
- 5.8%
- 6.0%
- 6.2%
- 6.4%
- 6.6%
For a whole life insurance of 1000 on (50), you are given:
(i) The death benefit is payable at the end of the year of death
(ii) Mortality follows the Standard Ultimate Life Table
(iii) [math]i=0.04[/math] in the first year, and [math]i=0.05[/math] in subsequent years
Calculate the actuarial present value of this insurance.
- 187
- 189
- 191
- 193
- 195
The present value random variable for an insurance policy on [math](x)[/math] is expressed as:
Determine which of the following is a correct expression for [math]E[Z][/math].
- [math]{ }_{10 \mid} \bar{A}_{x}+{ }_{20} \bar{A}_{x}-{ }_{30 \mid} \bar{A}_{x}[/math]
- [math]\bar{A}_{x}+{ }_{20} E_{x} \bar{A}_{x+20}-2{ }_{30} E_{x} \bar{A}_{x+30}[/math]
- [math]{ }_{10} E_{x} \bar{A}_{x}+{ }_{20} E_{x} \bar{A}_{x+20}-2{ }_{30} E_{x} \bar{A}_{x+30}[/math]
- [math]{ }_{10} E_{x} \bar{A}_{x+10}+{ }_{20} E_{x} \bar{A}_{x+20}-2{ }_{30} E_{x} \bar{A}_{x+30}[/math]
- [math]{ }_{10} E_{x}\left[\bar{A}_{x+10}+{ }_{10} E_{x+10} \bar{A}_{x+20}-{ }_{10} E_{x+20} \bar{A}_{x+30}\right][/math]