⧼exchistory⧽
16 exercise(s) shown, 0 hidden
Jan 16'24

A group of 100 people start a Scissor Usage Support Group. The rate at which members enter and leave the group is dependent on whether they are right-handed or left-handed.

You are given the following:

(i) The initial membership is made up of 75% left-handed members (L) and 25% right-handed members [math](\mathrm{R})[/math]

(ii) After the group initially forms, 35 new (L) and 15 new (R) join the group at the start of each subsequent year

(iii) Members leave the group only at the end of each year

(iv) [math]q^{L}=0.25[/math] for all years

(v) [math]q^{R}=0.50[/math] for all years

Calculate the proportion of the Scissor Usage Support Group's expected membership that is left-handed at the start of the group's [math]6^{\text {th }}[/math] year, before any new members join for that year.

  • 0.76
  • 0.81
  • 0.86
  • 0.91
  • 0.96

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

For the country of Bienna, you are given:

(i) Bienna publishes mortality rates in biennial form, that is, mortality rates are of the form:

[[math]] { }_{2} q_{2 x}, \text { for } x=0,1,2, \ldots [[/math]]


(ii) Deaths are assumed to be uniformly distributed between ages [math]2 x[/math] and [math]2 x+2[/math], for [math]x=0,1,2, \ldots[/math]

(iii) [math]{ }_{2} q_{50}=0.02[/math]

(iv) [math]{ }_{2} q_{52}=0.04[/math]

Calculate the probability that (50) dies during the next 2.5 years.

  • 0.02
  • 0.03
  • 0.04
  • 0.05
  • 0.06

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

[math]\mathrm{X}[/math] and [math]\mathrm{Y}[/math] are both age [math]61 . \mathrm{X}[/math] has just purchased a whole life insurance policy. [math]\mathrm{Y}[/math] purchased a whole life insurance policy one year ago.

Both [math]\mathrm{X}[/math] and [math]\mathrm{Y}[/math] are subject to the following 3-year select and ultimate table:

[math]x[/math] [math]\ell_{[x]}[/math] [math]\ell_{[x]+1}[/math] [math]\ell_{[x]+2}[/math] [math]\ell_{x+3}[/math] [math]x+3[/math]
60 10,000 9,600 8,640 7,771 63
61 8,654 8,135 6,996 5,737 64
62 7,119 6,549 5,501 4,016 65
63 5,760 4,954 3,765 2,410 66

The force of mortality is constant over each year of age.

Calculate the difference in the probability of survival to age 64.5 between [math]\mathrm{X}[/math] and [math]\mathrm{Y}[/math].

  • 0.035
  • 0.045
  • 0.055
  • 0.065
  • 0.075

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

A life is subject to the following 3 -year select and ultimate table:

[math][x][/math] [math]\ell_{[x]}[/math] [math]\ell_{[x]+1}[/math] [math]\ell_{[x]+2}[/math] [math]\ell_{x+3}[/math] [math]x+3[/math]
55 10,000 9,493 8,533 7,664 58
56 8,547 8,028 6,889 5,630 59
57 7,011 6,443 5,395 3,904 60
58 5,853 4,846 3,548 2,210 61

You are also given:

(i) [math]e_{60}=1[/math]

(ii) Deaths are uniformly distributed over each year of age

Calculate [math]\stackrel{\circ}{e}_{[58]+2}[/math].

  • 1.5
  • 1.6
  • 1.7
  • 1.8
  • 1.9

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

You are given the following information from a life table:

[math]x[/math] [math]l_{x}[/math] [math]d_{x}[/math] [math]p_{x}[/math] [math]q_{x}[/math]
95 - - - 0.40
96 - - 0.20 -
97 - 72 - 1.00

You are also given:

(i) [math]\quad l_{90}=1000[/math] and [math]l_{93}=825[/math]

(ii) Deaths are uniformly distributed over each year of age.

Calculate the probability that (90) dies between ages 93 and 95.5.

  • 0.195
  • 0.220
  • 0.345
  • 0.465
  • 0.668

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 16'24

You are given:

i) The following extract from a three-year select and ultimate table:

[math][x][/math] [math]q_{[x]}[/math] [math]q_{[x]+1}[/math] [math]q_{[x]+2}[/math] [math]q_{x+3}[/math] [math]x+3[/math]
50 0.020 0.031 0.043 0.056 53
51 0.025 0.037 0.050 0.065 54
52 0.030 0.043 0.057 0.072 55
53 0.035 0.049 0.065 0.091 56
54 0.040 0.055 0.076 0.113 57
55 0.045 0.061 0.090 0.140 58

ii) Mortality follows a uniform distribution of deaths over each year of age

Calculate [math]1000_{\left(0.6 \mid 1.5 q_{[52]+1.7}\right)}[/math].

  • 91
  • 92
  • 93
  • 94
  • 95

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.