Find the general solution of each of the following differential equations. If the characteristic equation has complex roots, write your solution in trigonometric form.
- [math]2\dydx + 3y = 0[/math]
- [math]y^\prime = 5y[/math]
- [math]\deriv{2}y + 4 \dydx - 5y = 0[/math]
- [math]\deriv{2}y - 2 \dydx + 5y = 0[/math]
- [math]y^{\prime\prime} + 8y^\prime + 16y = 0[/math]
- [math]4 \deriv{2}y - 4 \dydx + y = 0[/math]
- [math]y^{\prime\prime} - 7y^{\prime} = 0[/math]
- [math]\deriv{2}y + 4y = 0[/math]
- [math]\deriv2y - 9y = 0[/math]
- [math]\dydx + 13y = 0[/math]
- [math]\deriv2y + 13 \dydx = 0[/math]
- [math]\deriv2y + \dydx + y = 0[/math]
- [math]y^{\prime\prime} + 14y^\prime + 50y = 0[/math]
- [math]y^{\prime\prime} + 14y^\prime + 49y = 0[/math].
- lab{6.8.2a}
Find the general solution of the differential equation
[[math]] \deriv2y _ 8\dydx + 16y = 0 . [[/math]]
- Find the particular solution [math]y[/math] of the equation in part \ref{ex6.8.2a} with the property that [math]y = 2[/math] and [math]\dydx = 9[/math] when [math]x = 0[/math]. (Hint: Use these two conditions to evaluate the arbitrary constants which appear in the general solution.)
Find the particular solution [math]y[/math] of each of the following differential equations such that [math]y[/math] and [math]\dydx[/math] have the prescribed values when [math]x=0[/math].
- [math]\deriv2y + 4\dydx + 3y = 0[/math], \quad [math]y=3[/math] and [math]\dydx=-5[/math] when [math]x=0[/math].
- [math]25\deriv2y + 10\dydx + y = 0[/math], \quad [math]y=1[/math] and [math]\dydx = \frac{14}5[/math] when [math]x=0[/math].
- [math]\deriv2y + 3\dydx = 0[/math], \quad [math]y=3[/math] and [math]\dydx = 6[/math] when [math]x=0[/math].
- [math]\deriv2y + 2\dydx + 2y = 0[/math], \quad [math]y=5[/math] and [math]\dydx = -5[/math] when [math]x=0[/math].
- [math]y^{\prime\prime} + 3y^\prime + 5y = 0[/math], \quad [math]y(0) = 2[/math] and [math]y^\prime(0) = 6[/math].
Show by differentiation and substitution that [math]e^{\alpha x}\sin \beta x[/math] is a solution of
- lab{6.8.5a} Show that [math]\conj{e^z} = e^{\conj z}[/math].
- Use \ref{ex6.8.5a} and Problem to show that [math]ce^z + \conj c e^{\conj z}[/math] is real for any complex numbers [math]c[/math] and [math]z[/math].
- Multiply [math]a \cos x + b \sin x[/math] by [math]\frac{\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}[/math] and hence show that it can be written in the form [math]c \sin (x+k)[/math], where [math]c = \sqrt{a^2+b^2}[/math], [math]\sin k = \frac a{\sqrt{a^2+b^2}}[/math], and [math]\cos k = \frac b{\sqrt{a^2+b^2}}[/math].
- Multiply [math]a \cos x + b \sin x[/math] by
[math]\frac{\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}[/math]
and hence show that it can be written in the form
[math]c \cos(x+k)[/math], where
[[math]] c = \sqrt{a^2+b^2},\:\sin k = \frac{-b}{\sqrt{a^2+b^2}}, \:\mbox{and}\: \cos k = \frac{a}{\sqrt{a^2+b^2}} . [[/math]]
- lab{6.8.7a} Show that [math]y = c_1e^{\alpha x}\sin(\beta x+c_2)[/math] is a solution of the differential equation [math]y^{\prime\prime} - 2\alpha y^\prime + (\alpha^2+\beta^2)y = 0[/math].
- Show that [math]y = c_1e^{\alpha x}\cos(\beta x+c_2)[/math] is also a solution of the differential equation in \ref{ex6.8.7a}.
For what value of values of [math]r[/math] is [math]e^{rx}[/math] a solution of the third-order linear differential equation [math]y^{\prime\prime\prime} -6y^{\prime\prime} + 5y^\prime = 0[/math]?
- lab{6.8.9a}
Solve the homogeneous differential equation
[[math]] \deriv2y - 8 \dydx + 12y = 0 . [[/math]]
- lab{6.8.9b}
Substitute the linear polynomial [math]Ax+B[/math] for [math]y[/math]
in the nonhomogeneous differential equation
[[math]] \deriv2y - 8\dydx + 12y = 24x + 12 . [[/math]]Hence find values of [math]A[/math] and [math]B[/math] for which this polynomial is a particular solution of the differential equation.
- Show that the function which is the sum of the solutions found in \ref{ex6.8.9a} and \ref{ex6.8.9b} is also a solution to the differential equation in \ref{ex6.8.9b}.
If [math]y_h[/math] is a solution of [math]\deriv2y + a \dydx + by = 0[/math] and [math]y_p[/math] is a solution of [math]\deriv2y + a \dydx + by = h(x)[/math], show that [math]y_h + y_p[/math] is also a solution of