Revision as of 02:26, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> (from Hamming<ref group="Notes" >R. W. Hamming, ''The Art of Probability for Scientists and Engineers'' (Redwood City: Addison-Wesley, 1991), p. 192.</ref>) Suppose you are standing on the bank of a straight river. <ul><li> Choose, at rando...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
(from Hamming[Notes 1])
Suppose you are standing on the bank of a straight river.
- Choose, at random, a direction which will keep you on dry land, and walk 1 km in that direction. Let [math]P[/math] denote your position. What is the expected distance from [math]P[/math] to the river?
- Now suppose you proceed as in part (a), but when you get to [math]P[/math], you pick a random direction (from among all directions) and walk 1 km. What is the probability that you will reach the river before the second walk is completed?
Notes