Revision as of 14:43, 7 May 2023 by Admin (Created page with "Define <math>g(x) = kx </math> and <math>h(y) = 1 </math>. Then <math>f(x,y) = g(x) h(x) </math>. In other words, <math>f(x,y)</math> can be written as the product of a functi...")
Exercise
ABy Admin
May 07'23
Answer
Define [math]g(x) = kx [/math] and [math]h(y) = 1 [/math]. Then [math]f(x,y) = g(x) h(x) [/math]. In other words, [math]f(x,y)[/math] can be written as the product of a function of [math]x[/math] alone and a function of [math]y[/math] alone. It follows that [math]X[/math] and [math]Y[/math] are independent. Therefore, [math]\operatorname{Cov}[X, Y] = 0.[/math]