Exercise
ABy Admin
May 07'23
Answer
Solution: B
Define [math]g(x) = kx [/math] and [math]h(y) = 1 [/math]. Then [math]f(x,y) = g(x) h(x) [/math]. In other words, [math]f(x,y)[/math] can be written as the product of a function of [math]x[/math] alone and a function of [math]y[/math] alone. It follows that [math]X[/math] and [math]Y[/math] are independent. Therefore, [math]\operatorname{Cov}[X, Y] = 0.[/math]