Revision as of 01:34, 18 January 2024 by Admin
Exercise
ABy Admin
Jan 15'24
Answer
Answer: D
This is a mixed distribution for the population, since the vaccine will apply to all once available.
Available?
[math](A)[/math] | [math]\operatorname{Pr}(A)[/math] | [math]{ }_{2} p \mid A[/math] | [math]E(S \mid A)[/math] | [math]\operatorname{Var}(S \mid A)[/math] | [math]E\left(S^{2} \mid A\right)[/math] |
---|---|---|---|---|---|
Yes | 0.2 | 0.9702 | 97,020 | 2,891 | [math]9,412,883,291[/math] |
No | 0.8 | 0.9604 | 96,040 | 3,803 | [math]9,223,685,403[/math] |
[math]E(S)[/math] | [math]E\left(S^{2}\right)[/math] | ||||
96,236 | [math]9,261,524,981[/math] | ||||
[math]\operatorname{Var}(S)[/math] | 157,285 | ||||
[math]S D(S)[/math] | 397 |
As an example, the formulas for the "No" row are
[math]\operatorname{Pr}(\mathrm{No})=1-0.2=0.8[/math]
[math]{ }_{2} p[/math] given [math]\mathrm{No}=(0.98[/math] during year 1[math])(0.98[/math] during year 2[math])=0.9604[/math]
[math]E(S \mid \mathrm{No}), \operatorname{Var}(S \mid[/math] No [math])[/math] and [math]E\left(S^{2} \mid\right.[/math] No [math])[/math] are just binomial, [math]n=100,000 ; \mathrm{p}([/math] success [math])=0.9604[/math]
[math]E(S), E\left(S^{2}\right)[/math] are weighted averages,
[math]\operatorname{Var}(S)=E\left(S^{2}\right)-E(S)^{2}[/math]
Or, by the conditional variance formula:
[[math]]
\begin{aligned}
\operatorname{Var}(S) & =\operatorname{Var}[E(S \mid A)]+E[\operatorname{Var}(S \mid A)] \\
& =0.2(0.8)(97,020-96,040)^{2}+0.2(2,891)+0.8(3,803) \\
& =153,664+3,621=157,285 \\
\operatorname{StdDev}(S) & =397
\end{aligned}
[[/math]]