Exercise


ABy Admin
Jan 15'24

Answer

Answer: D

This is a mixed distribution for the population, since the vaccine will apply to all once available.

Available?

[math](A)[/math] [math]\operatorname{Pr}(A)[/math] [math]{ }_{2} p \mid A[/math] [math]E(S \mid A)[/math] [math]\operatorname{Var}(S \mid A)[/math] [math]E\left(S^{2} \mid A\right)[/math]
Yes 0.2 0.9702 97,020 2,891 [math]9,412,883,291[/math]
No 0.8 0.9604 96,040 3,803 [math]9,223,685,403[/math]
[math]E(S)[/math] [math]E\left(S^{2}\right)[/math]
96,236 [math]9,261,524,981[/math]
[math]\operatorname{Var}(S)[/math] 157,285
[math]S D(S)[/math] 397

As an example, the formulas for the "No" row are

[math]\operatorname{Pr}(\mathrm{No})=1-0.2=0.8[/math]

[math]{ }_{2} p[/math] given [math]\mathrm{No}=(0.98[/math] during year 1[math])(0.98[/math] during year 2[math])=0.9604[/math]

[math]E(S \mid \mathrm{No}), \operatorname{Var}(S \mid[/math] No [math])[/math] and [math]E\left(S^{2} \mid\right.[/math] No [math])[/math] are just binomial, [math]n=100,000 ; \mathrm{p}([/math] success [math])=0.9604[/math]

[math]E(S), E\left(S^{2}\right)[/math] are weighted averages,

[math]\operatorname{Var}(S)=E\left(S^{2}\right)-E(S)^{2}[/math]

Or, by the conditional variance formula:

[[math]] \begin{aligned} \operatorname{Var}(S) & =\operatorname{Var}[E(S \mid A)]+E[\operatorname{Var}(S \mid A)] \\ & =0.2(0.8)(97,020-96,040)^{2}+0.2(2,891)+0.8(3,803) \\ & =153,664+3,621=157,285 \\ \operatorname{StdDev}(S) & =397 \end{aligned} [[/math]]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00