Revision as of 02:13, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the interval <math>[0,1]</math> with uniform density. Note that the point <math>(B,C)</math> is then chosen ''at random'' in the unit square. Find the probabil...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Choose independently two numbers [math]B[/math] and [math]C[/math]

at random from the interval [math][0,1][/math] with uniform density. Note that the point [math](B,C)[/math] is then chosen at random in the unit square. Find the probability that

  • [math]B + C \lt 1/2[/math].
  • [math]BC \lt 1/2[/math].
  • [math]|B - C| \lt 1/2[/math].
  • [math]\max\{B,C\} \lt 1/2[/math].
  • [math]\min\{B,C\} \lt 1/2[/math].
  • [math]B \lt 1/2[/math] and [math]1 - C \lt 1/2[/math].
  • conditions (c) and (f) both hold.
  • [math]B^2 + C^2 \leq 1/2[/math].
  • [math](B - 1/2)^2 + (C - 1/2)^2 \lt 1/4[/math].