Exercise


ABy Admin
Jan 19'24

Answer

Answer: A

[math]q_{x}^{\mathrm{NS}}=q_{x+1}^{\mathrm{NS}}=1-e^{-0.1}=0.095[/math]

Then the annual premium for the non-smoker policies is [math]P^{\mathrm{NS}}[/math], where

[[math]] \begin{aligned} P^{\mathrm{NS}}\left(1+v p_{x}^{\mathrm{NS}}\right) & =100,000 v q_{x}^{\mathrm{NS}}+100,000 v^{2} p_{x}^{\mathrm{NS}} q_{x+1}^{\mathrm{NS}}+30,000 v^{2} p_{x}^{\mathrm{NS}} p_{x+1}^{\mathrm{NS}} \\ P^{\mathrm{NS}} & =\frac{100,000(0.926)(0.095)+100,000(0.857)(0.905)(0.095)+30,000(0.857)(0.905)^{2}}{1+(0.926)(0.905)} \\ P^{\mathrm{NS}} & =20,251 \end{aligned} [[/math]]


And then [math]P^{\mathrm{S}}=40,502[/math].

[[math]] \begin{aligned} q_{x}^{S}=q_{x+1}^{S}= & 1.5\left(1-e^{-0.1}\right)=0.143 \\ E P V\left(L^{\mathrm{S}}\right)= & 100,000 v q_{x}^{\mathrm{S}}+100,000 v^{2} p_{x}^{\mathrm{S}} q_{x+1}^{\mathrm{S}}+30,000 v^{2} p_{x}^{\mathrm{S}} p_{x+1}^{\mathrm{S}}-P^{\mathrm{S}}-P^{\mathrm{S}} v p_{x}^{\mathrm{S}} \\ = & 100,000(0.926)(0.143)+100,000(0.857)(0.857)(0.143) \\ & \quad+30,000(0.857)(0.857)^{2}-40,502-40,502(0.926)(0.857) \\ = & -30,017 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00