Exercise
ABy Admin
Jan 19'24
Answer
Answer: A
[math]q_{x}^{\mathrm{NS}}=q_{x+1}^{\mathrm{NS}}=1-e^{-0.1}=0.095[/math]
Then the annual premium for the non-smoker policies is [math]P^{\mathrm{NS}}[/math], where
[[math]]
\begin{aligned}
P^{\mathrm{NS}}\left(1+v p_{x}^{\mathrm{NS}}\right) & =100,000 v q_{x}^{\mathrm{NS}}+100,000 v^{2} p_{x}^{\mathrm{NS}} q_{x+1}^{\mathrm{NS}}+30,000 v^{2} p_{x}^{\mathrm{NS}} p_{x+1}^{\mathrm{NS}} \\
P^{\mathrm{NS}} & =\frac{100,000(0.926)(0.095)+100,000(0.857)(0.905)(0.095)+30,000(0.857)(0.905)^{2}}{1+(0.926)(0.905)} \\
P^{\mathrm{NS}} & =20,251
\end{aligned}
[[/math]]
And then [math]P^{\mathrm{S}}=40,502[/math].
[[math]]
\begin{aligned}
q_{x}^{S}=q_{x+1}^{S}= & 1.5\left(1-e^{-0.1}\right)=0.143 \\
E P V\left(L^{\mathrm{S}}\right)= & 100,000 v q_{x}^{\mathrm{S}}+100,000 v^{2} p_{x}^{\mathrm{S}} q_{x+1}^{\mathrm{S}}+30,000 v^{2} p_{x}^{\mathrm{S}} p_{x+1}^{\mathrm{S}}-P^{\mathrm{S}}-P^{\mathrm{S}} v p_{x}^{\mathrm{S}} \\
= & 100,000(0.926)(0.143)+100,000(0.857)(0.857)(0.143) \\
& \quad+30,000(0.857)(0.857)^{2}-40,502-40,502(0.926)(0.857) \\
= & -30,017
\end{aligned}
[[/math]]