Exercise
ABy Admin
May 06'23
Answer
Solution: E
X has an Exponential distribution with mean 8 and variance 64. The second moment is 128. The mean and second moment of Z are both 0.45. Then (using the independence of X and Z),
[[math]]
\begin{align*}
\operatorname{E}( ZX ) = \operatorname{E}( Z ) \operatorname{E}( X ) = 0.45(8) \\
\operatorname{E}[( ZX )^ 2 ] = \operatorname{E}( Z ^2) \operatorname{E}( X^2 ) 0.45(128) = 57.6 \\
\operatorname{Var}(ZX) = 57.6 − 3.62 = 44.64.
\end{align*}
[[/math]]