Exercise


ABy Admin
May 06'23

Answer

Solution: E

X has an Exponential distribution with mean 8 and variance 64. The second moment is 128. The mean and second moment of Z are both 0.45. Then (using the independence of X and Z),

[[math]] \begin{align*} \operatorname{E}( ZX ) = \operatorname{E}( Z ) \operatorname{E}( X ) = 0.45(8) \\ \operatorname{E}[( ZX )^ 2 ] = \operatorname{E}( Z ^2) \operatorname{E}( X^2 ) 0.45(128) = 57.6 \\ \operatorname{Var}(ZX) = 57.6 − 3.62 = 44.64. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00