Exercise
May 01'23
Answer
Solution: B
Let [math]Y[/math] denote the claim payment made by the insurance company. Then
[[math]]
Y = \begin{cases}
0 \quad \textrm{with probability 0.94} \\
\max(0,x-1) \quad \textrm{with probability 0.04} \\
14 \quad \textrm{with probability 0.02}
\end{cases}
[[/math]]
and
[[math]]
\begin{align*}
\operatorname{E}[Y] &= ( 0.94 )( 0 ) + ( 0.04 )( 0.5003)\int_1^{15} (x-1)e^{-x/2} dx + (0.02)(14) \\
&= 0.28 + ( 0.020012 ) \left [-2x^{-x/2} \Big |_1^{15} + 2 \int_1^{15}e^{-x/2} dx - \int_1^{15}e^{-x/2} dx \right ] \\
&= 0.28 + ( 0.020012 ) \left [-30e^{-7.5} + 2e^{-0.5} -2e^{-x/2} \Big |_1^{15} \right ] \\
&= 0.28 + ( 0.020012 ) \left [-30e^{-7.5} + 2e^{-0.5} -2e^{-7.5} + 2e^{-0.5} \right ] \\
&= 0.28 + ( 0.020012 ) \left [-32e^{-7.5} + 4e^{-0.5} \right ] \\
&= 0.28 + ( 0.020012 )( 2.408 ) \\
&= 0.328 \quad \textrm{(in thousands)}
\end{align*}
[[/math]]