Exercise


Jan 15'24

Answer

Answer: B

Under constant force over each year of age, [math]l_{x+k}=\left(l_{x}\right)^{1-k}\left(l_{x+1}\right)^{k}[/math] for [math]x[/math] an integer and [math]0 \leq k \leq 1[/math].

[[math]] \begin{aligned} & { }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}} \\ & l_{[60]+0.75}=(80,000)^{0.25}(79,000)^{0.75}=79,249 \\ & l_{[60]+2.75}=(77,000)^{0.25}(74,000)^{0.75}=74,739 \\ & l_{[60]+5.75}=(67,000)^{0.25}(65,000)^{0.75}=65,494 \end{aligned} [[/math]]


[[math]]{ }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}}=\frac{74,739-65,494}{79,249}=0.11679[[/math]]

[[math]]1000_{2 \mid 3} q_{[60]+0.75}=116.8[[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00