Exercise
Jan 18'24
Answer
Answer: A
[math]E[Z]=2 \cdot A_{40}-{ }_{20} E_{40} A_{60}=(2)(0.36987)-(0.51276)(0.62567)=0.41892[/math]
[math]E\left[Z^{2}\right]=0.24954[/math] which is given in the problem.
[math]\operatorname{Var}(Z)=E\left[Z^{2}\right]-(E[Z])^{2}=0.24954-0.41892^{2}=0.07405[/math]
[math]S D(Z)=\sqrt{0.07405}=0.27212[/math]
An alternative way to obtain the mean is [math]E[Z]=2 A_{40: 20 \mid}^{1}+{ }_{20 \mid} A_{40}[/math]. Had the problem asked for the evaluation of the second moment, a formula is
[math]E\left[Z^{2}\right]=\left(2^{2}\right)\left({ }^{2} A_{40: 20}^{1}\right)+\left(v^{2}\right)^{20}\left({ }_{20} p_{40}\right)\left({ }^{2} A_{60}\right)[/math]