(i) An excerpt from a select and ultimate life table with a select period of 3 years:
[math]x[/math] | [math]l_{[x]}[/math] | [math]l_{[x]+1}[/math] | [math]l_{[x]+2}[/math] | [math]l_{x+3}[/math] | [math]x+3[/math] |
---|---|---|---|---|---|
60 | 80,000 | 79,000 | 77,000 | 74,000 | 63 |
61 | 78,000 | 76,000 | 73,000 | 70,000 | 64 |
62 | 75,000 | 72,000 | 69,000 | 67,000 | 65 |
63 | 71,000 | 68,000 | 66,000 | 65,000 | 66 |
(ii) Deaths follow a constant force of mortality over each year of age
Calculate [math]1000_{2 \mid 3} q_{[60]+0.75}[/math].
- 104
- 117
- 122
- 135
- 142
You are given:
(i) An excerpt from a select and ultimate life table with a select period of 2 years:
[math]x[/math] | [math]l_{[x]}[/math] | [math]l_{[x]+1}[/math] | [math]l_{x+2}[/math] | [math]x+2[/math] |
---|---|---|---|---|
50 | 99,000 | 96,000 | 93,000 | 52 |
51 | 97,000 | 93,000 | 89,000 | 53 |
52 | 93,000 | 88,000 | 83,000 | 54 |
53 | 90,000 | 84,000 | 78,000 | 55 |
(ii) Deaths are uniformly distributed over each year of age
Calculate [math]10000_{2.2} q_{[51]+0.5}[/math].
- 705
- 709
- 713
- 1070
- 1074
The SULT Club has 4000 members all age 25 with independent future lifetimes. The mortality for each member follows the Standard Ultimate Life Table.
Calculate the largest integer [math]N[/math], using the normal approximation, such that the probability that there are at least [math]N[/math] survivors at age 95 is at least [math]90 \%[/math].
- 800
- 815
- 830
- 845
- 860
You are given:
[math]x[/math] | [math]l_{x}[/math] |
---|---|
60 | 99,999 |
61 | 88,888 |
62 | 77,777 |
63 | 66,666 |
64 | 55,555 |
65 | 44,444 |
66 | 33,333 |
67 | 22,222 |
[math]a={ }_{3.42 .5} q_{60}[/math] assuming a uniform distribution of deaths over each year of age [math]b={ }_{3.4 \mid 2.5} q_{60}[/math] assuming a constant force of mortality over each year of age Calculate 100,000(a-b).
- -24
- 9
- 42
- 73
- 106
You are given the following extract from a table with a 3-year select period:
[math]x[/math] | [math]q_{[x]}[/math] | [math]q_{[x]+1}[/math] | [math]q_{[x]+2}[/math] | [math]q_{x+3}[/math] | [math]x+3[/math] |
---|---|---|---|---|---|
60 | 0.09 | 0.11 | 0.13 | 0.15 | 63 |
61 | 0.10 | 0.12 | 0.14 | 0.16 | 64 |
62 | 0.11 | 0.13 | 0.15 | 0.17 | 65 |
63 | 0.12 | 0.14 | 0.16 | 0.18 | 66 |
64 | 0.13 | 0.15 | 0.17 | 0.19 | 67 |
[math]e_{64}=5.10[/math]
Calculate [math]e_{[61]}[/math].
- 5.30
- 5.39
- 5.68
- 5.85
- 6.00
For a mortality table with a select period of two years, you are given:
[math]x[/math] | [math]q_{[x]}[/math] | [math]q_{[x]+1}[/math] | [math]q_{x+2}[/math] | [math]x+2[/math] |
---|---|---|---|---|
50 | 0.0050 | 0.0063 | 0.0080 | 52 |
51 | 0.0060 | 0.0073 | 0.0090 | 53 |
52 | 0.0070 | 0.0083 | 0.0100 | 54 |
53 | 0.0080 | 0.0093 | 0.0110 | 55 |
The force of mortality is constant between integral ages.
Calculate [math]1000_{2.5} q_{[50]+0.4}[/math].
- 15.2
- 16.4
- 17.7
- 19.0
- 20.2
A club is established with 2000 members, 1000 of exact age 35 and 1000 of exact age 45 . You are given:
(i) Mortality follows the Standard Ultimate Life Table
(ii) Future lifetimes are independent
(iii) [math] N[/math] is the random variable for the number of members still alive 40 years after the club is established
Using the normal approximation, without the continuity correction, calculate the smallest [math]n[/math] such that [math]\operatorname{Pr}(N \geq n) \leq 0.05[/math].
- 1500
- 1505
- 1510
- 1515
- 1520
A father-son club has 4000 members, 2000 of which are age 20 and the other 2000 are age 45. In 25 years, the members of the club intend to hold a reunion.
You are given:
(i) All lives have independent future lifetimes.
(ii) Mortality follows the Standard Ultimate Life Table.
Using the normal approximation, without the continuity correction, calculate the [math]99^{\text {th }}[/math] percentile of the number of surviving members at the time of the reunion.
- 3810
- 3820
- 3830
- 3840
- 3850